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Executive Summary 

This work investigates the use of wavelet and FFT decompositions in the context 
of denoising signals embedded in white Gaussian noise. The data is pre-filtered 
(3rd order median filter) in part of the work and is not pre-filtered in another part. 
Once the noisy signal is decomposed (using the wavelet or the FFT), the transform 
coefficients are denoised using a predictive filter (order 2) or another median filter 
(order 3). Three test signals are used: a frequency chirp with constant amplitude, a 
frequency chirp with RC time constant type amplitude modulation, and a Barker 
coded BPSK signal. Pre-filtering, coupled with FFT processing and follow on 
median filtering provides the best MSE results for the two chirped waveforms. The 
decomposition approach does not work for the BPSK signal. In this case, a simple 
median filter, employed in the time domain, is shown to be a better denoising 
candidate. 

xx 



SIGNAL TO NOISE RATIO IMPROVEMENT USING WAVELET 
AND FREQUENCY DOMAIN BASED PROCESSING 

Ralph Hippenstiel 
Electrical and Computer Engineering Department 

Naval Postgraduate School 
Monterey, Ca 93943 

1.       Introduction 

A.       BACKGROUND 

In the majority of applications only a noise-corrupted version of the signal of 

interest is available. In many problems it is desirable to enhance the signal to allow a 

more precise determination of the signal parameters, such as duration, chip rate, chirp 

rate, modulation type, carrier frequency, etc. The enhancement concept can also be 

applied to improve time delay based localization. In time delay estimation both channels 

are denoised. The cross correlation properties of the signal channels are also used to 

obtain a precise time difference of arrival (TDOA) estimate [lj. 

Wavelet (WL) decomposition is used in many signal processing applications. One 

important application is noise reduction, also called denoising. Each transform coefficient 

represents a measure of the correlation between the signal and a WL basis function. 

Large coefficients represent good correlation, while small coefficients represent poor 

correlation. Denoising tends to retain the coefficients that preserve the signal and remove 

the coefficients that represent noise. The difficult part of the denoising process is to 

decide which components to emphasize and which ones to de-emphasize. One can also 

replace the WL decomposition with a Fourier type decomposition, so that in the time- 
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frequency domain the signal related components are emphasized. Again the difficulty is 

to decide which components are signal related and which ones are not. 

The idea behind signal enhancement is simple: transform the noisy signal to the 

time-scale or time-frequency domain (i.e., analysis), reduce the noise effects, and 

transform the modified coefficients back to the time domain (i.e., synthesis). Since the 

signal will not occupy all frequency regions at all times, some of the noise can be 

removed. The noise reduction works best when the signal is concentrated in time, or in 

frequency, or both in frequency and time. 

B.       ORGANIZATION 

This report examines two transform techniques that are used to denoise (or filter) 

the transform coefficients in their respective transform domains. A median filtering and 

predictive filtering method is used to denoise the data in the transform domain. A pre- 

filtering approach (using a median filter in the original time domain) is also implemented 

and compared to results when no pre-filtering is attempted. 

2.      DECOMPOSITIONS 

The basic idea behind denoising (or filtering) is to separate the noisy signal into 

its constituent components. That is, separation into parts primarily associated with the 

signal components and those that are not. The noise removal tends to retain the signal 

related components and remove as much as is possible the components that relate to the 

noise only. Inadvertently, some signal components are removed while some noise 

components are retained. To allow separation of noise and signal, the noisy signal is 



mapped into one of the two transform domains, denoised, and mapped back to the 

original time domain. The mappings considered are decompositions based on the wavelet 

(WL) and the fast Fourier transform (FFT). The WL and FFT operations are shown in 

block diagram form in figures 1 and 2, respectively. The symbols s and u are used to 

denote the signal and the noise, respectively. 

The WL transform allows a decomposition into spectral bands that are 

proportional to the band center of the spectral region, i.e., constant Q-filtering. For all 

detail and approximation coefficients, the sample rate is kept at the Nyquist rate, that is, 

every scale (i.e., every band pass filter) has an output data rate matched to the bandwidth 

of the filter [2]. 

On the other hand, the FFT transform provides for a uniformly spaced filter bank 

having a constant band width a constant data output rate. The data rate can be matched to 

the Nyquist rate. For practical reasons, overlap processing is used, which makes the 

output data rate larger than the minimum rate (i.e., overlap is 75 percent, the output rate is 

4 times the Nyquist rate) [2]. 

Block Diagram  Using Wavelet 
D enoising 

r 
W T D eno ising IW T 

x(n) - s(n) + u(n) 
s(n) = s(n)+ e(n) 

Figure 1: System block diagram for WL based denoising. 



Block Diagram Using FFT Based 
D enoising 

x{n) = s(n)+ u(n) 
s(n) = s(n)+ e(n) 

Figure 2:    System block diagram for FFT based denoising. 

Prior to the decomposition a pre-filter can be used in the denoising process. If pre- 

filtering is invoked then it is accomplished using a 3rd order median filter. 

3.      WAVELET BASED PROCESSING 

Wavelet (WL) processing is also known as constant Q-filtering, pro-proportional 

band width processing, multi-rate filtering, and time-scale processing. Figure 3 shows 

some of the details of the WL based processing and the weighting of the detail and 

approximation coefficients. In each region of interest a low and high pass filter is used to 

edit out signals occupying the respective spectral band region. 

The denoising procedure consists of three steps. These steps are discrete wavelet 

decomposition, scaling of each subband sequence, and an inverse wavelet transform. The 

modified subband sequences are obtained by weighting each subband as given by 

di =wddi ;      and 



ai   =Wa;ai   I i = l,2,---,J , 

where    wd and   wa    represent the weighting terms. 

x(k) 
LPF 

0 
&•—wdi 

©rt^© 

y 
<&—wdi 

r© 

0 
dj 

a
j 

Figure 3: Processing in the wavelet domain. 

The weighting accomplishes the signal enhancement by de-emphasizing noise 

related components. The weighting schemes used in this report is median filtering and 

predictive filtering. Classical denoising schemes as advocated in Donahoe [3-5] fail at 

low SNR (i.e., in the negative dB region) and are not investigated in this report. Some 

detail on the classical denoising performance in conjunction with GSM signal 

localization can be found in [6]. 

Transform coefficients denoising is obtained using a median filter or an optimal 

(Wiener) predictor. 



i)   Median Altering: 

The median filter is applied to each scale output. The detail (band pass) outputs 

are denoted by dj  (for i =1,..,J), while the single approximation (low pass) output is 

referred to as a; . Each output (detail and approximation) is median filtered to de- 

emphasize  (reduce) the band limited white noise contribution. The median filter takes 

several sequential data points and uses as the filtered output the data point that is obtained 

as the middle point when ranking is invoked. A median filter, of length 3, is applied to 

the first J sequences of detail coefficients and the J*   sequence of the approximation 

coefficients of the WL transform. The median filter replaces the center point of the 

window with the median value of all the points contained in the window.  Ranking the 

values and selecting the central value achieves this. The length of the window is very 

important.  For example,  for a narrowband  signal  a long window  length  maybe 

appropriate. If the signal is non-stationary, a short window tends to be better. If one does 

not have a priori information about the source signal this can be a drawback. Based on 

empirical evidence a median filter of size 3 was selected for the three data sets used in the 

simulations. 

ii)   Predictive Filtering: 

The predictive filtering [7] is accomplished using a Wiener FIR filter of size 2. 

The predictive filter predicts the predictable part that is thought to be the signal, hence its 

output tends to have little residual noise. A predictive filter is applied to all generated 

detail sequences and the final approximation sequence of interest. Each filter output has 

the same number of data samples as its corresponding input sequence. During the 



initialization, (i.e., the transitory region, i.e., the first two data output points), the input 

(unfiltered) data is used as the estimate of the signal component. The second order 

predictor works best in that it produced a smaller MSE compared to predictors of 

different sizes. 

4.      FFT BASED PROCESSING 

In the FFT based approach, the constant Q-filters are replaced with constant 

bandwidth filters (i.e., with the FFT bins). As in the WL based approach, two denoising 

(filtering) approaches are taken: median filtering and predictive filtering. All frequency 

bins have the same number of data points (i.e., have the same sampling rate). The symbol 

r is used to denote the down and up sampling. The down sampling is a function of the 

overlap factor and the data length used in the FFT transform. 

x(n)=s(n)+u(n. 
\ 

Time-Frequency Processing 

BPF 

BPF 

modifier 

(jr) ► modifier  —\r) 

Figure 4: Schematic data flow in time-frequency (FFT) based denoising. 



5.     DATA AND PROCESSOR PARAMETERS 

Three test signals are used in the simulations. All simulations are conducted using 

Matlab (version 6.0) [8]. The first one is a chirp signal that increases in amplitude from 

zero to a maximum in an RC time constant fashion. This signal is referred to as the 

Doppler signal in reference [9]. The second signal is a linearly chirped sinusoid that has a 

constant amplitude. The third signal is a BPSK signal that uses a Barker code of length 5 

[10], for each one of its information bits. 

The data length is fixed at 512 samples. The power of the signals is normalized to 

be unity. The additive Gaussian noise is white having a variance that is adjusted to obtain 

the desired signal-to-noise ratio (SNR). The following SNR values are used: 

-10, -6, -3,0, 3, and 6 decibels (dB). To ensure statistical reliability, each signal is 

processed 100 times using independent noise realizations. The third signal uses a random 

start time, that is, a delay uniformly distributed between 0 and 27 data points. Its carrier 

frequency is selected so that there are 9 data points per period of the carrier. The 

denoising is performed in the WL and FFT domain. 

For the WL based processing an empirically selected Daubechies filter of order 

8 (in the Matlab wavelet toolbox denoted by DB4, [11]) is used. The first 5 scales are 

used in the denoising process, which accesses the top 31/32 of the spectrum as band pass 

regions (detail) and the lower 1/32 of the spectrum as the low pass region 

(approximation). The band pass region as determined by the 5 scales, occupies 1/2 + 1/4 

+ 1/8 + 1/16 + 1/32 = 31/32 of the spectral range leaving the remainder (1/32) as the low 

pass region. In the wavelet literature, band pass signals and low pass signals are denoted 

by detail and approximation functions, respectively. 



For the FFT based processing an FFT size of 32, an overlap of 4:1 (i.e., 75 

percent), and a triangular data window is used [12]. For the given data length of 512, this 

resulted in 61 output points for each spectral bin. Since the data is real valued, only the 

non-negative frequency regions are processed, with the negative spectral region being 

replaced with the complex conjugate of the corresponding processed positive spectral 

region. 

6.     SIMULATION RESULTS 

Figures 5 through 10 show the mean squared error (MSE) performance versus 

SNR for the three test signals. The experiments utilize 6 different SNRs. The MSE, at 

each SNR, is given by 

K       N A 

MSE = l/(KN) 2 E (s(n)-s (n,k)f 

where K is the number of realizations, N is the number of data points (i.e., fixed at 512), 

A 

and s (n,k)  is the k-th denoised (filtered) realizations of s(n) derived from x(n), the 

noisy data. For the generation of figure 5 through 10 and A.l through A.6, 100 

realizations, (i.e., K = 100), are used. 

The MSE is one benchmark that can be used to establish performance. We note that when 

the Wiener filter (i.e., predictor) is used, then strictly interpreting the MSE results can be 

misleading. This is especially true as the MSE approaches a value of one. For example, it 

is possible for the weights of the Wiener based filter to become very small. Hence the 

predictor output tends to be zero. Since the power of the true signal is set to be unity, the 

MSE tends to be one. When a predictor is involved, it may be desirable to examine the 



actual denoised output. Some representative examples (-6 and 6 dB) are given in the 

second part of appendix A. We note that for time delay of arrival (TDOA) estimation the 

MSE can be interpreted as a measure of correlation, that is as the error goes to zero, the 

sum of the auto correlation coefficient of the replica and of the auto correlation 

coefficient of the estimate tends to equal twice the cross correlation coefficient of the 

signal and the estimate. In this sense, it suggests that the replica (i.e., true signal) and the 

denoised signal correlate strongly. 

Figures 5 through 10 illustrate plots of the MSE for the three test signals as a 

function of processing technique and SNR. All test results are obtained by pre-filtering 

the data with a median filter. That is prior to time-scaling or time-frequency 

decomposition, the data is filtered using a median filter of order 3. A 3rd order filter is the 

smallest possible median filter. It achieves some noise reduction without extensive 

distortion of transient features. The odd numbered figures show results resulting from the 

WL based decomposition, while the even numbered figures show results resulting from 

the FFT based decomposition. 

The solid line (i.e., the line with circles) serves as a reference line and demonstrates the 

MSE performance when using only a 3rd order median filter. This median filter is the 

only filtering applied and is implemented in the time domain. The variance of the noise 

corrupting the signals is VA, V4, 1, 2,4 and 10 at 6, 3, 0, -3, -6, and -10 dB, respectively. 

These variance values will also correspond to the MSE if no filtering is done. 

10 



-©- time-domain median filt 
-B- med-wl-predict 
-A-  med-wl-median 

Figure 5. Signal Si. Pre-filtering only and pre-filtered WL decomposition. 

Figure 5 and 6 show results for the test signal Si. Signal Si is the amplitude 

modulated sinusoid, whose amplitude increases in an RC time constant fashion. Figure 5 

shows the MSE of the filtered output, using just the median filter of size 3, which reduces 

the variance of the data. Follow on processing via the WL based decomposition reduces 

the error relative to pure time domain median filtering for SNR values below -3 dB. 

Based on the MSE the prediction filter, applied to the wavelet coefficients, outperforms 

median filtering applied to the wavelet coefficients. The situation is reversed for SNR 

values higher then -3 dB. In this case, the predictor based scheme displays the worst 

performance. 

11 



-e- time-domain median filt 
-B- med-ffi-predict 
-■A- med-fft-median 

Figure 6. Signal Si. Pre-filtering only and pre-filtered FFT decomposition. 

as a 

Figure 6 shows the performance when median pre-filtering and FFT based 

decomposition is used. Again the time domain median only filter output serves 

reference (i.e., solid line with circles). For all SNR levels below 6 dB, the predictor 

outperforms the median only filtering. For SNR levels below the 0 db level, median 

filtering of the FFT coefficients, in terms of the MSE, provides the best results. 

Figures 7 and 8 show results for the test signal S2. Signal S2 is a constant 

amplitude linear frequency chirped sinusoid. 

12 



-S- time-domain median filt 
-B- med-wl-predict 
-A- med-wl-median 

Figure 7. Signal S2. Pre-filtering only and pre-filtered WL decomposition. 

Figure 7 shows the MSE of the filtered output, using the time domain median 

filter of size 3, which reduces the variance of the data. Follow on processing via the WL 

based decomposition reduces the error relative to just median filtering for SNR values 

below -3 dB. Based on the MSE, the prediction filter, when applied to wavelet 

coefficients, outperforms median filtering applied to wavelet coefficients for SNR values 

below -3dB. The situation is reversed for SNR values higher then -3 dB. In this case, the 

predictor based scheme displays the worst performance. The performance is very similar 

to the one obtained using test signal S). 

13 



-6- time-domain median filt 
-B- med-ffi-predict 
-A-  med-ffi-median 

Figure 8. Signal S2. Pre-filtering only and pre-filtered FFT decomposition. 

Figure 8 shows the performance when median pre-filtering and FFT based 

decomposition is used. Again the time domain median only filter output serves as a 

reference (i.e., solid line with circles). For all SNR levels below 6 dB, the predictor 

outperforms the median only filtering. For SNR levels below the -3 db level median 

filtering of the FFT coefficients provides the best MSE results,. 

Figures 9 and 10 show results for the test signal S3 (i.e., the Barker coded BPSK 

signal). 
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-9- time-domain median filt 
-a- med-wl-predict 
-A- med-wl-median 

Figure 9. Figure S3. Pre-filtering only and pre-filtered WL decomposition. 

Figure 9 show that the MSE of the filtered output, using the time domain median 

filter of size 3, which reduces the variance of the data. For SNR values below -3 dB, 

follow on processing via the WL based decomposition reduces the error relative to 

median filtering only. Above the -3 dB level, the time domain based median filter has the 

edge over the WL based decomposition using either median or prediction filtering. For all 

SNR values under consideration, the prediction filter, as applied to the wavelet 

coefficients, outperforms median filtering applied to the wavelet coefficients. 

15 



-©- time-domain median fill 
-B- ffi-predict 
-A- ffl-median 

Figure 10. Signal S3. Pre-filtering only and pre-filtered FFT decomposition. 

Figure 10 shows the performance when median pre-filtering and FFT based 

decomposition is used. Again the time domain median only filter output serves as a 

reference (i.e., solid line with circles). For all SNR levels, the predictor output has a 

worse MSE performance than the median only filtering. For SNR levels below the -3 db 

level, in terms of the MSE, median filtering of the FFT coefficients provides the best 

results. The poor performance of the predictor comes as no surprise, since the phase of 

the sinusoid changes 180 degrees at random points in time. For SNR values larger than 

- 3 dB, straight forward time domain median filtering achieves the best MSE results. 

The data was also processed using the WL and FFT based decompositions and 

follow on processing without pre-filtering. The results are not as promising as the ones 

16 



when the pre-filter (i.e., time domain median filtering of order 3) is used. Plots of the 

MSE are provided in the first part of appendix A. 

The MSE can not tell the whole story since at least in the case of a Wiener 

(optimal) filter the possibility exits that the filter weights become very small, hence the 

filter (i.e., predictor) output can become very small. This implies that the MSE will 

approach the power of the signal, which in the simulation is forced to be unity. It may be 

advisable to look at particular denoised signals to have a visual interpretation of the 

quality. Some typical randomly selected examples, (i.e., at - 6 and 6 dB) are given in the 

second part of appendix A. 

7.      CONCLUSION 

The chirped sinusoids, for SNR levels below - 3 dB are best denoised using a 

combination of median pre-processing, FFT decomposition, and median filtering of the 

FFT coefficients. Above - 3 dB median pre-processing, FFT decomposition and 

predictive filtering of the FFT coefficients have a slight edge in terms of MSE over 

median filtering of the FFT coefficients. 

It appears that of the decomposition and processing techniques examined, time domain 

median filtering followed by FFT based decomposition, which in turn is followed by 

median filtering, provides the superior MSE performance. 

The Barker coded BPSK signal is best denoised using time domain median filtering. This 

particular signal is very sensitive to SNR since phase reversals are more easily distorted 

even for SNR values greater than - 3 dB. 

17 



8.  REFERENCES 

1. Hippenstiel, R., Haney, T., and Ha, T., "Improvement of the Time Difference of 
Arrival (TDOA) Estimation of GSM Signals Using Wavelets," NPS-EC-00-08, 
June 30,2000, Naval Postgraduate School. 

2. Hippenstiel,   Ralph,   Detection   Theory:   Applications   and   Digital   Signal 
Processing, CRC Press, Boca Raton, FL, 2002. 

3. Donahoe,   D.,   and  Johnstone,   I.,   "Ideal   Spatial   Adaptation   via  Wavelet 
Shrinkage," Biometrica, vol. 81,pp425-255, 1994. 

4. Donahoe, D., "Denoising by Thresholding," IEEE Information Theory, vol 41 
pp 613-627, May 1995. 

5. Donahoe, D., and Johnstone, I., "Adapting to Unknown Smoothness via Wavelet 
Shrinkage," Journal of American Statistics Assoc, vol. 90, pp 1200-1224 
December 1995. 

6. Aktas, U., Time Difference of Arrival (TDOA) Estimation Using Wavelet Based 
Denoising, Master's Thesis, Naval Postgraduate School, Monterey, CA, 1999. 

7. Therrien, C.W., Discrete Random Signals and Statistical Signal Processing. 
Prentice Hall, Inc., Englewood Cliffs, NJ., 1992. 

8. The Matlab software, version 6.0, The Mathworks, Inc., Natick, MA, 1999. 
9. WaveLab Version 802, wavelab@stat.stanford.edu 
10. Andren, C, "Short PN Sequences for Direct Sequence Spread Spectrum 

Radios,"http://www.ss-mag.com/pdf/shortpn.pdf ,pg. 1-4, April,4 1997. 
11. The Matlab Wavelet Toolbox, The Mathworks, Inc., Natick, MA, 1996. 
12. Marple, L., Jr., Digital Spectral Analysis with Applications. Prentice Hall  Inc 

Englewood Cliffs, NJ., 1987. 

18 



APPENDIX A 

The appendix consists of two parts. The first part (figures A.l through A.6) shows 

MSE results when no pre-filtering is used. That is the noisy data is FFT or WL 

decomposed and than processed via an optimal predictor (size 2) or a median 

filter (size 3). In all chirp signal test cases, i.e., figure A.l through A.4, the results 

indicate that prior data manipulation (i.e., 3 point median filtering in the time 

domain) will out perform the schemes that do not use pre-filtering. The Barker 

coded BPSK, seems only to benefit from time domain median filtering only at 

high SNR values (i.e., 6 dB or more), see for example figure A. 12. The 

decompositions are not very useful when denoising a signal belonging to the 

family characterized by S3  (i.e., Barker coded BPSK). 

19 
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-©- time-domain median filt 
-Q- wl-predict 
-A- wl-median 

SNR 

Figure A.l: No pre-processing, Signal S,. Time domain pre-filtering versus WL 

decomposition. 

Figure A.l shows results for signal Si. As a benchmark (solid line with circles) 

the time domain only median filter of order 3 is used. The other two plots show 

WL decomposition results that uses follow on median (order 3) and prediction 

filtering (size 2). 

20 



time-domain median filt 
-H- ffi-predict 
-A- ffi-median 

Figure A.2: No pre-processing, Signal Si. Time domain pre-filtering versus FFT 

decomposition. 

Figure A.2 shows results for signal Si. As a benchmark (solid line with circles) the time 

domain only median filter of order 3 is used. The other two plots show FFT 

decomposition results that uses follow on median (order 3) and prediction filtering (size 

2). 
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5^ 

-9- time-domain median filt 
-B- wl-predict 
-A- wl-median 

Figure A.3 : No pre-processing, Signal S2. Time domain pre-filtering versus WL 

decomposition. 

Figure A.3 shows results for signal S2. As a benchmark (solid line with circles) the time 

domain only median filter of order 3 is used. The other two plots show WL 

decomposition results that uses follow on median (order 3) and prediction filtering (size 

2). 
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time-domain median 
-B- ffi-predict 
-A- fit-median 

Figure A.4 : No pre-processing, Signal S2. Time domain pre-filtering versus FFT 

decomposition. 

Figure A.4 shows results for signal S2. As a benchmark (solid line with circles) the time 

domain only median filter of order 3 is used. The other two plots show FFT 

decomposition results that uses follow on median (order 3) and prediction filtering (size 

2). 
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-©- time-domain median filt 
-B- wl-predict 
-A- wl-median 

Figure A.5: No pre-processing, Signal S3. Time domain pre-filtering versus WL 

decomposition. 

Figure A.5 shows results for signal S3. As a benchmark (solid line with circles) the time 

domain only median filter of order 3 is used. The other two plots show WL 

decomposition results that uses follow on median (order 3) and prediction filtering (size 

2). 
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time-domain median filt 
-a- fft-predict 
-A- fft-median 

Figure A.6: No pre-processing, Signal S3. Time domain pre-filtering versus FFT 

decomposition. 

Figure A.6 shows results for signal S3. As a benchmark (solid line with circles) the time 

domain only median filter of order 3 is used. The other two plots show FFT 

decomposition results that uses follow on median (order 3) and prediction filtering (size 

2). 

The second part of appendix A serves as an illustration as to how the signals 

(original, noisy signal, denoised signal) look like in the time domain for a few selected 

values of SNR. The SNR values selected are -6 and 6 dB. Since there are many 

realizations at each SNR, only the first realization is used in the plots (i.e., a random 
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member of the ensemble). These plots can provide some insight into time domain 

performance since the MSE results can be misleading when it comes to the optimal 

predictor implementation. 

Figures A.7 through A.9 have an SNR of-6 dB and represent SI, S2, and S3, 

respectively. Figure A. 10 through A. 12 have an SNR of 6 dB and represent signals S1, 

S2, and S3, respectively. Each plot consists of 7 subplots. The subplots, for the purpose 

of this discussion, are referred to in the same sense as the members of a matrix, that is 

subplot (row, column). Subplot (1,1) and (1,2) show the signal and noisy signal, 

respectively. Subplot (2,1) shows the time domain median filtered result. Subplot (3,1) 

and (4,1) show results when the data is pre-processed and wavelet decomposed . Subplot 

(3,1) uses prediction on the wavelet coefficients, while (4,1) uses median filtering on the 

wavelet coefficients. Subplot (3,2) and (4,2) uses pre-processing and FFT decomposition. 

Subplot (3,2) uses prediction on the FFT coefficients, while (4,1) uses median filtering on 

the FFT coefficients. 
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Figure A.7: Signal Si at -6 dB 

Figure A.7 shows a typical time domain representation of signal Si, at an SNR value of 

- 6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the 

time domain). 
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Figure A.8: Signal S2 at -6 dB 

Figure A.8 shows a typical time domain representation of signal S2, at an SNR value of 

- 6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time 

domain). 
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Figure A.9: Signal S3 at - 6dB (first 150 samples) 

Figure A.9 shows a typical time domain representation of signal S3, at an SNR value of 

- 6 dB. Only the first 150 data points are used to show the phase transition points more 

clearly. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time 

domain). 
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Figure A. 10: Signal S i at 6 dB 

Figure A.10 shows a typical time domain representation of signal Su at an SNR value of 

6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time 

domain). 
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Figure A. 11: Signal S2 at 6 dB 

Figure A. 11 shows a typical time domain representation of signal S2, at an SNR value of 

6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time 

domain). 
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100 150 

Figure A. 12: Signal S3 at 6 dB (first 150 samples) 

Figure A. 12 shows a typical time domain representation of signal S3, at an SNR value of 

6 dB. Only the first 150 data points are used to show the phase transition points more 

clearly. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time 

domain). 
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APPENDIX B 

Matlab code: 

nois_rem_2.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% program nois_rem_2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% creates and denoises 3 test signals for a set of SNR's. 
% Doppler signal+ chirp with RC time constant envelope 
% approching a constant, a constant envelope chirp, and 
% a Barker coded BPSK signal. All signals have unit power. 
% calls makesignal,denoisewl, predi,dnswlmed 
% written by Ralph Hippenstiel 
% wavelets used are Db4 (Daubechies order 8) 
% FFTs use a triangular window and 4:1 overlap (75% overlap) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
nx=input('enter number of scales nx = ') 
p=input('enter predictor size = ') 
nd=512; 
nr=input('enter number of realizations (i.e., 100) = ') 

%create the signal si 
s 1 =makesignal('Doppler',nd); 
zl=length(sl);% zl is length of the data = nd 
pwrl=l/zl*sum(sl.A2); 
sl=sl/sqrt(pwrl);%normalized power 

%create the signal s2 
tim=[0.01:0.01:6.12]; 
xchirp=sin(34.7./tim); 
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s2=xchirp(41:41 -1 +z 1); 
pwr2=l/zl*sum(s2.A2); 
s2=s2/sqrt(pwr2);%normalized power 

%define SNR 
sn=[-10,-6,-3,0,3,6]; 
SNR=10.A(sn./10); 

err_l=[] 
err_2=[] 
err_3=[] 

err_wl_predl=[]; 
err_wl_pred2=[]; 
err_wl_pred3=[]; 
er_wl_predl=[j; 
er_wl_pred2=[]; 
er_wl_pred3=[]; 

err_wl_medl=[]; 
err_wl_med2=[]; 
err_wl_med3=[]; 
er_wl_medl=[]; 
er_wl_med2=[]; 
er_wl_med3=[]; 

err_fft_predl=[]; 
err_fft_pred2=[]; 
err_fft_pred3=[]; 
er_fft_predl=[]; 
er_fft_pred2=[]; 
er_fft_pred3=[]; 

err_fft_medl=[]; 
err_fft_med2=[]; 
err_fft_med3=[]; 
er_fft_medl=[]; 
er_fft_med2=[]; 
er_fft_med3=[]; 

for i=l :nr; %nr = no. of realizations 

%create Gaussian noise, zero mean & unit variance 
n=randn(l,zl); 
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%create the signal s3 
%w=[ones(18,l); -ones(18,l); ones(6,l); -ones(12,l); ones(6,l); -ones(6,l)]; 
w=[ones(3*18,l); -ones(18,l); ones(18,l)]; 
%bi=sign(rand( 1,8)-0.5); 
%vi=[bi(l)*w;bi(2)*w;bi(3)*w;bi(4)*w;bi(5)*w;bi(6)*w;bi(7)*w;bi(8)*w;]'; 
%si=sin(2*pi/6*[0:527]); 
bi=sign(rand( 1,6)-0.5); 
vi=[bi(l)*w;bi(2)*w;bi(3)*w;bi(4)*w;bi(5)*w;bi(6)*w]'; 
si=sin(2*pi/9* [0:539]); 
s3=si.*vi; 
%tsi=rand(l,l)*16; 
tsi=rand(l,l)*27; 
ltsi=ceil(tsi); 
s3=s3(ltsi:ltsi+511); 
pwr3=l/zl*sum(s3.A2); 
s3=s3/sqrt(pwr3);% normalized power 

fork=l:length(SNR); %no. of SNR's 
%scale noise for req. SNR 
ora=SNR(k); 
noi=sqrt( l/(ora))*n; 
npwr= 1/z 1 *sum(noi.A2); 

%xi, i= 1,2,3 is the raw data 
xl=sl+noi; 
x2=s2+noi; 
x3=s3+noi; 

%xxi, i=l,2,3 is median filtered (size 3) data 
% pre-filter 
xxl=medfiltl(xl,3); 
xx2=medfiltl(x2,3) 
xx3=medfiltl(x3,3) 

%ONLY pre-filtered error results 
err_l(k,i)=l/zl*sum((sl-xxl).A2) 
err_2(k,i)=l/zl *sum((s2-xx2).A2) 
err_3(k,i)=l/zl*sum((s3-xx3).A2) 

% wavelet processing with prediction 
% pre-filtered: 

x 1 _real=denoisewl(xx 1 ,p,nx); 
err_wl_predl (k,i)=l/zl *sum((s 1 -x l_real).A2); 
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x2_real=denoisewl(xx2,p,nx); 
err_wl_pred2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=denoisewl(xx3,p,nx); 
err_wl_pred3(k,i)=l/zl*sum((s3-x3_real).A2); 

% No pre-filter: 
x l_real=denoisewl(x 1 ,p,nx); 
er_wl_pred 1 (k,i)= 1/z 1 *sum((s 1 -x l_real).A2); 
x2_real=denoisewl(x2,p,nx); 
er_wl_pred2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=denoisewl(x3,p,nx); 
er_wl_pred3(k,i)=l/zl*sum((s3-x3_real).A2); 

% wavelet processing with median filtering 
% pre-filtered: 

x l_real=dnswlmed(xx 1 ,nx); 
err_wl_medl(k,i)=l/zl*sum((sl-xl_real).A2); 
x2_real=dnswlmed(xx2,nx); 
err_wl_med2(k,i)= 1/z 1 *sum((s2-x2_real).A2); 
x3_real=dnswlmed(xx3,nx); 
err_wl_med3(k,i)=l/zl*sum((s3-x3_real).A2); 

% No pre-filter: 
x l_real=dnswlmed(x 1 ,nx); 
er_wl_medl(k,i)=l/zl*sum((sl-xl_real).A2); 
x2_real=dnswlmed(x2,nx); 
er_wl_med2(k,i)=l/z 1 *sum((s2-x2_real).A2); 
x3_real=dnswlmed(x3,nx); 
er_wl_med3(k,i)=l/zl*sum((s3-x3_real).A2); 

% EFT processing with prediction 
% pre-filtered: 

x l_real=predi(xxl ,p); 
err_fft_pred 1 (k,i)= 1 /z 1 *sum((s 1 -x ljreal). A2); 
x2_real=predi(xx2,p); 
err_fft_pred2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=predi(xx3,p); 
err_fft_pred3(k,i)= 1 /z 1 *sum((s3-x3_real) A2); 

%No Prefilter: 
xl_real=predi(xl,p); 
er_fft_predl(k,i)=l/zl*sum((sl-xl_real).A2); 
x2_real=predi(x2,p); 
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er_fft_pred2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=predi(x3 ,p); 
er_fft_pred3(k,i)=l/zl*sum((s3-x3_real).A2); 

%FFT processing with median filtering 
% pre-filtered: 

xl_real=denoise_med(xxl); 
err_fft_medl(k,i)=l/zl*sum((sl-xl_real).A2); 
x2_real=denoise_med(xx2); 
err_fft_med2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=denoise_med(xx3); 
err_fft_med3(k,i)=l/zl*sum((s3-x3_real).A2); 

% No pre-filter: 
x 1 _real=denoise_med(x 1); 
er_fft_medl (k,i)=l/zl *sum((sl-x l_real).A2); 
x2_real=denoise_med(x2); 
er_fft_med2(k,i)=l/zl*sum((s2-x2_real).A2); 
x3_real=denoise_med(x3); 
er_fft_med3(k,i)=l/zl*sum((s3-x3_real).A2); 
end 
end 

% compute statistical averages 
me 1 =mean(err_ 1'); 
me2=mean(err_2'); 
me3=mean(err_3'); 

me_wl_pred 1 =mean(err_wl_pred 1'); 
me_wl_pred2=mean(err_wl_pred2'); 
me_wl_pred3=mean(err_wl_pred3'); 

e_wl_predl =mean(er_wl_predl'); 
e_wl_pred2=mean(er_wl_pred2'); 
e_wl_pred3=mean(er_wl_pred3'); 

me_wl_med 1 =mean(err_wl_med 1'); 
me_wl_med2=mean(err_wl_med2'); 
me_wl_med3=mean(err_wl_med3'); 

e_wl_med 1 =mean(er_wl_med 1') 
e_wl_med2=mean(er_wl_med2') 
e_wl_med3=mean(er_wl_med3') 

me_fft_pred 1 =mean(err_fft_pred 1'); 
me_fft_pred2=mean(err_fft_pred2'); 
me_fft_pred3=mean(err_fft_pred3'); 
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e_fft_pred 1 =mean(er_fft_pred 1') 
e_fft_pred2=mean(er_fft_pred2') 
e_fft_pred3=mean(er_fft_pred3') 

me_fft_med 1 =mean(err_fft_med 1') 
me_fft_med2=mean(err_fft_med2') 
me_fft_med3=mean(err_fft_med3') 

e_fft_med 1 =mean(er_fft_med 1') 
e_fft_med2=mean(er_fft_med2') 
e_fft_med3=mean(er_fft_med3') 
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Makesignal.m 

function sig = MakeSignal(Name,n) 
% MakeSignal - Make artificial signal 
% Usage 
%    sig = MakeSignal(Name,n) 
% Inputs 
%   Name   string: 'HeaviSine', 'Bumps', 'Blocks', 
% 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', 
% 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', 
% 'MishMash', 'WernerSorrows' (Heisenberg), 
% 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), 
% 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' 
% 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' 
% 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) 
%   n     desired signal length 
% Outputs 
%    sig    1-d signal 
% 
% References 
%    Various articles of D.L. Donoho and I.M. Johnstone 
% 

ifnargin>l, 
t = (l:n)./n; 

end 
if strcmp(Name,'HeaviSine'), 

sig = 4.*sin(4*pi.*t); 
sig = sig - sign(t - .3) - sign(.72 -1); 

elseif strcmp(Name,'Bumps'), 
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; 
hgt=[4 5   3   4 5 4.2 2.14.3 3.15.14.2]; 
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; 
sig = zeros(size(t)); 
forj =l:length(pos) 

sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).A4; 
end 

elseif strcmp(Name,'Blocks'), 
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; 

.    hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)]; 
sig = zeros(size(t)); 
forj=l:length(pos) 

sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2); 
end 

elseif strcmp(Name,'Doppler'), 
,   sig = sqrt(t.*(l-t)).*sin((2*pi*1.05) ./(t+.05)); 
elseif strcmp(Name,'Ramp'), 
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sig = t - (t >= .37); 
elseif strcmp(Name,'Cusp'), 

sig = sqrt(abs(t - .37)); 
elseif strcmpCName/Sing'), 

k = floor(n * .37); 
sig = 1 ./abs(t - (k+.5)/n); 

elseif strcmp(Name,'HiSine'), 
sig = sin( pi * (n * .6902) .* t); 

elseif strcmp(Name,'LoSine'), 
sig = sin(pi*(n*.3333).*t); 

elseif strcmp(Name,'LinChirp'), 
sig = sin(pi .* t .* ((n .* .500) .* t)); 

elseif strcmp(Name,TwoChirp'), 
sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t)); 

elseif strcmp(Name,'QuadChirp'), 
sig = sin( (pi/3) .* t .* (n .* t.A2)); 

elseif strcmp(Name,'MishMash'), % QuadChirp + LinChirp + HiSine 
sig = sin( (pi/3) .* t .* (n .* t.A2)); 
sig = sig + sin( pi * (n * .6902) .* t); 
sig = sig + sin(pi .* t .* (n .* .125 .* t)); 

elseif strcmp(Name,*WernerSorrows'), 
sig = sin( pi .* t .* (n/2 .* t.A2)); 
sig = sig + sin( pi * (n * .6902) .* t); 
sig = sig + sin(pi .* t .* (n .* t)); 
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; 
hgt = [4 5   3   4 5 4.2 2.14.3 3.15.14.2]- 
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]- 
forj=l:length(pos) 

sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).M; 
end 

elseif strcmp(Name,'Leopold'), 
sig = (t = floor(.37 * n)/n); % Kronecker 

elseif strcmp(Name,'Riemann'), 
sqn = round(sqrt(n)); 

sig = t .* 0; % Riemann's Non-differentiable Function 
sig((l:sqn).A2)=l../(l:sqn); 
sig = real(ifft(sig)); 

elseif strcmp(Name,'HypChirps'), % Hyperbolic Chirps of Mallafs book 
alpha   = 15*n*pi/1024; 
beta   = 5*n*pi/1024; 
t =(1.001:l:n+.001)./n; 
fl      =zeros(l,n); 
f2     =zeros(l,n); 
fl        = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68); 
f2        = sin(beta./(.8-t)).*(0.1<t).*(t<0.75); 
M       = round(0.65*n); 
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P = floor(M/4); 
enveloppe = ones(l,M); % the rising cutoff function 

enveloppe(l:P) = (l+sin(-pi/2+((l:P)-ones(l,P))./(P-l)*pi))/2; 
enveloppe(M-P+l:M) = reverse(enveloppe(l:P)); 

env     =zeros(l,n); 
env(ceil(n/10):M+ceil(n/10)-l) = enveloppe(l:M); 
sig    = (fl+f2).*env; 

elseif strcmp(Name,'LinChirps'), % Linear Chirps of Mallat's book 
b = 100*n*pi/1024; 
a = 250*n*pi/1024; 
t =(l:n)./n; 
Al       = sqrt((t-l/n).*(l-t)); 
sig      = Al .*(cos((a*(t).A2)) + cos((b*t+a*(t).A2))); 

elseif strcmp(Name,'Chirps'), % Mixture of Chirps of Mallat's book 
t =(l:n)./n.*10.*pi; 
f 1        = cos(t.A2*n/1024); 
a = 30*n/1024; 
t =(l:n)./n.*pi; 
f2        = cos(a.*(t.A3)); 
f2        = reverse(f2); 
ix        = (-n:n)./n.*20; 
g =exp(-ix.A2*4*n/1024); 
il        =(n/2+l:n/2+n); 
i2        =(n/8+l:n/8+n); 
j =(l:n)/n; 
f3        =g(il).*cos(50.*pi.*j*n/1024); 
f4        = g(i2).*cos(350.*pi.*j*n/1024); 
sig       =fl+f2+f3+f4; 

enveloppe = ones(l,n); % the rising cutoff function 
enveloppe( 1 :n/8) = (1 +sin(-pi/2+(( 1 :n/8)-ones( 1 ,n/8))./(n/8-1 )*pi))/2; 
enveloppe(7*n/8+l:n) = reverse(enveloppe(l:n/8)); 

sig       = sig.*enveloppe; 
elseif strcmp(Name,'Gabor'), % two modulated Gabor functions in 

% Mallat's book 
N = 512; 
t = (-N:N)*5/N; 

j = (l:N)./N; 
g = exp(-t.A2*20); 
il = (2*N/4+l:2*N/4+N); 
i2 = (N/4+l:N/4+N); 
sigl = 3*g(il).*exp(i*N/16.*pi.*j); 
sig2 = 3*g(i2).*exp(i*N/4.*pi.*j); 
sig = sigl+sig2; 

elseif strcmpCName/sineoneoverx'), % sin(l/x) in Mallat's book 
N =1024; 
i = (-N+l:N); 
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i(N) = 1/100; 
i = i./(N-l); 
sig = sin(1.5./(i)); 
sig = sig(513:1536); 

elseif strcmp(Name,'Cusp2'), 
N = 64; 
i = (l:N)./N; 
x = (l-sqrt(i)) + i/2-.5; 
M = 8*N; 
sig = zeros(l,M); 
sig(M-1.5.*N+l:M-.5*N) = x; 
sig(M-2.5*N+2:M-1.5.*N+l) = reverse(x); 
sig(3*N+l:3*N + N) = .5*ones(l,N); 

elseif strcmp(Name,'SmoothCusp'), 
sig = MakeSignal('Cusp2'); 
N = 64; 
M = 8*N; 
t = (l:M)/M; 
sigma = 0.01; 

g = exp(-.5.*(abs(t-.5)./sigma).A2)./sigma./sqrt(2*pi); 
g = fftshift(g); 
sig2 = iconv(g',sig)'/M; 

elseif strcmp(Name,'Piece-Regular'), 
sigl=-15*MakeSignal('Bumps',n); 
t = (l:fix(n/12))./fix(n/12); 
sig2=-exp(4*t); 
t = (l:fix(n/7))./fix(n/7); 
sig5=exp(4*t)-exp(4); 
t = (l:fix(n/3))./fix(n/3); 
sigma=6/40; 
sig6=-70*exp(-((t-l/2).*(t-l/2))/(2*sigmaA2)); 
sig(l:fix(n/7))= sig6(l:fix(n/7)); 
sig((fix(n/7)+l):fix(n/5))=0.5*sig6((fix(n/7)+l):fix(n/5)); 
sig((fix(n/5)+l ):fix(n/3))=sig6((fix(n/5)+l ):fix(n/3)); 
sig((fix(n/3)+l):fix(n/2))=sigl((fix(n/3)+l):fix(n/2)); 
sig((fix(n/2)+l):(fix(n/2)+fix(n/12)))=sig2; 
sig((fix(n/2)+2*fix(n/12)):-l:(fix(n/2)+fix(n/12)+l))=sig2; 

sig(fix(ny2)+2*fix(n/12)+fix(n/20)+l:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))= 
-ones(l,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25- 

k=fix(n/2)+2*fix(n/12)+3*fix(n/20); 
sig((k+l):(k+fix(n/7)))=sig5; 
diff=n-5*fix(n/5); 
sig(5*fix(n/5)+1 :n)=sig(diff:-1:1); 
% zero-mean 
bias=sum(sig)/n; 
sig=bias-sig; 
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elseif strcmp(Name,'Piece-Polynomiar), 
t = (l:fix(n/5))./fix(n/5); 
sigl=20*(t.A3+t.A2+4); 
sig3=40*(2.*t.A3+t) + 100; 
sig2=10.*t.A3 + 45; 
sig4=16*t.A2+8.*t+16; 
sig5=20*(t+4); 
sig6( 1 :fix(n/l 0))=ones( 1 ,fix(n/l 0)); 
sig6=sig6*20; 
sig(l:fix(n/5))=sigl; 
sig(2*fix(n/5):-l:(fix(n/5)+l))=sig2; 
sig((2*fix(n/5)+l):3*fix(n/5))=sig3; 
sig((3*fix(n/5)+l):4*fix(n/5))=sig4; 
sig((4*fix(n/5)+l):5*fix(n/5))=sig5(fix(n/5):-l: 1); 
diff=n-5*fix(n/5); 
sig(5*fix(n/5)+l :n)=sig(diff:-1:1); 
%sig((fix(n/20)+l):(fix(n/20)+fix(n/10)))=-ones(l,fix(n/10))*20; 
sig((fix(n/20)+l):(fix(n/20)+fix(n/10)))=ones(l,fix(n/10))*10; 
sig((n-fix(n/10)+l):(n+fix(n/20)- 

fix(n/10)))=ones(l,fix(n/20))*150; 
% zero-mean 
bias=sum(sig)/n; 
sig=sig-bias; 

elseif strcmp(Name,'Gaussian'), 
sig=GWN(n,beta); 
g=zeros(l,n); 
lim=alpha*n; 
mult=pi/(2*alpha*n); 
g( 1 :lim)=(cos(mult*( 1 :lim))).A2; 
g((n/2+l):n)=g((n/2):-l:l); 
g = mshift(g,n/2); 
g=g/norm(g); 
sig=iconv(g,sig); 

else 
disp(sprintf('MakeSignal: I don*t recognize <<%s»',Name)) 
dispCAllowable Names are:') 

disp('HeaviSine'), 
disp('Bumps'), 
disp('Blocks'), 
disp('Doppler'), 
disp('Ramp'), 
disp('Cusp'), 
disp('Crease'), 
disp('Sing'), 
disp('HiSine'), 
disp('LoSine'), 
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dispC'LinChirp*), 
disp('TwoChirp'), 
dispCQuadChirp'), 
disp('MishMash'), 
disp('WemerSorrows'), 
disp('Leopold'), 
dispCSing'), 
disp('HiSme'), 
disp('LoSine'), 
disp('LinChirp'), 
disp(TwoChirp'), 
disp('QuadChirp'), 
disp('MishMash'), 
disp('WeraerSorrows'), 
disp('Leopold'), 
disp('Riemann'), 
dispCHypChirps'), 
disp('LinChirps'), 
disp('Chirps'), 
disp('sineoneoverx'), 
disp('Cusp2'), 
disp('SmoothCusp'), 
disp('Gabor'), 
disp('Piece-Regular'); 
disp('Piece-Polynomial'); 
disp('Gaussian'); 

end 

% 

% Originally made by David L. Donoho. 
% Function has been enhanced. 

% 

% Part of WaveLab Version 802 
% Built Sunday, October 3, 1999 8:52:27 AM 
% This is Copyrighted Material 
% For Copying permissions see COPYING.m 
% Comments? e-mail wavelab@stat.stanford.edu 
% 
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denoisewl.m 

% Denoise: 
%      via orthogonal wavelet transform. We modify each 
%      detail and approx.function by prediction 
%      % 
% SYNTAX: x_real=denoisewl(xn,p,nx) 
% 
% INPUT: xn = Received signal 
%       p= predictor order 
%       nx = number of scales used 
% 
% OUTPUT: x_real = Denoised signal 
% 
% 
% SUB_FUNC: depred 
% Written by ralph hippenstiel 

function x_real=denoisewl(xn,p,nx); 

[ex lx]=wavedec(xn,nx,'db4'); 

dxc=[]; 
for i=l:nx 

d=detcoef(cx,lx,i); 
dl=length(d); 

dc=depred(d,p); 
dxc=[dc dxc]; 

end 
a=appcoef(cx,lx,'db4',nx); 

ac=depred(a,p); 
dxc=[ac dxc]; 

xd=waverec(dxc,lx,'db4'); 
x_real=xd; 
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dnswlmed.m 

% Denoise: 
%      via orthogonal wavelet transform. We modify each 
%      detail and approx.function by prediction 
%     % 

% SYNTAX: x_real=dnswlmed(xn,nx) 
% 

% INPUT: xn = Received signal 
%       nx = number of scales 
% 
% 

% OUTPUT: x_real = Denoised signal 
% 
% 

% SUB_FUNC: None 
% Written by ralph hippenstiel 

function x_real=dnswlmed(xn,nx); 

% nx defines the level of decomposition 

[ex lx]=wavedec(xn,nx,'db4'); 

dxc=[]; 
for i=l:nx 

d=detcoef(cx,lx,i); 
dl=length(d); 

dc=medfiltl(d); 
dxc=[dc dxc]; 

end 
a=appcoef(cx,lx,'db4',nx); 
ac=medfiltl(a); 
dxc=[ac dxc]; 
xd=waverec(dxc,lx,'db4'); 
x_real=xd; 
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predi.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% denoises the signal using overlapped fft's and lin. prediction 
% function xl_real=predi(x,p) 
% p=predictor order 
% output    recy=denoised signal 
% calls subroutine depred(t,p) 
% ffts segments of the sequence using triangular windows 
% written by Ralph Hippenstiel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function x_real=predi(x,p); 

fx=[]; 

for i= 1:61 

fx(i,:)=fft(x((i-l)*8+l:(i-l)*8+32).*triang(32)'); 

end 

fork=l:17 
t=fx(:,k); 
xh=depred(t,p); 
fx(:,k)=conj(xh)'; 

end 
fys=conj(fliplr(fx(:,2:16))); 

fx(:,18:32)=fys; 

%recover the filtered sequence 
recy(512)=0; 
fori= 1:61 

recy((i-l)*8+l:(i-l)*8+32)=recy((i-l)*8+l:(i-l)*8+32)+ifft(fx(i,:)); 
end 

x_real=recy*0.5; 
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denoise_med.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%denoises using a ID median filter along time 
%subroutine denoise_med(x) 
%written by Ralph Hippenstiel 

function x_real=denoise_med(x); 

%transform (fft) the data 
for i= 1:61 

fx(i,:)=fft(x((i-1 )*8+1 :(i-1 )*8+32). *triang(32)'); 
end 

%filter the transformed data 
fori=l:17 

fy(:,i)=medfiltl(real(fx(:,i)),3)+j*medfiltl(imag(fx(:,i)),3); 
end 

fys=conj(fliplr(fy(:,2:16))); 
fy(:,18:32)=fys; 
%recover the filtered sequence 
recy(512)=0; 
for i= 1:61 

recy((i-l)*8+l:(i-l)*8+32)=recy((i-l)*8+l:(i-l)*8+32)+ifft(fy(i,:)); 
end 
recy=recy*0.5; 
x_real=recy; 
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depred.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%denoises the test signal using a predictor of length= size 
% written by Ralph Hippenstiel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function xh=dpred(dat,siz) 
xw(512)=0; 
sdat=dat; 
ko=length(sdat); 
no=siz; 
cor=xcorr(sdat); 
r( 1 :no+1 )=cor(ko:ko+no); 
a(no)=0; 
xh(ko)=0; 
xh( 1 :no)=sdat( 1 :no); 
R=toeplitz(r(l :no),conj(r(l :no))); 
ro=r(2:no+l); 
a=in v(R) *conj (ro'); 
fori=no+l:ko 
xw(no)=0; 
fork=l:no 
xw(k)=a(k)*sdat(i-k); 
end 
xh(i)=sum(xw); 
end 
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